The First Synthesis of Se-Methyl Carboxylic Thionoselenolesters

Mohamed Khalid, Jean-Louis Ripoll and Yannick Vallée*

Laboratoire de Chimie des Composés Thio-organiques, URA CNRS 480, ISMRA, 14050 Caen, France

Reaction of carboxylic thionoesters with dimethylaluminium methylselenolate in diethyl ether gave the corresponding *Se*-methyl thionoselenolesters in 87–98% yield.

Carboxylic thionoselenolesters have been the subject of limited investigation,¹ in contrast to the thiono- and dithioesters, which have received much attention.² Two methods have been reported for the synthesis of *Se*-aryl thionoselenolesters from bisthioacyl sulphide or thioacyl chloride,³ but no general route to the corresponding *Se*-alkyl derivatives was available. In this communication, we report the first synthesis of *Se*-methyl thionoselenolesters **1**.

Dimethylaluminium methylselenolate 2 is known as an efficient reagent for the conversion of esters into selenolesters,^{4,5} and we expected that it could also be used to transform the readily available and stable thionoesters 3^6 into thionoselenolesters 1. In fact, when a thionoester 3 was treated in diethyl ether with a slight excess of 2 at room temperature for ten hours, the desired seleno-compound 1

$$\begin{array}{cccc} S & S & S \\ \parallel & i & \parallel & ii & \parallel \\ R^1 COR^2 & \longrightarrow R^1 CSeCH_3 & \longrightarrow R^1 CN(CH_3)_2 \\ \textbf{3a-g} & \textbf{1a-g} & \textbf{4d,e,f} \end{array}$$

Scheme 1 Reagents: i, ca. 1.4 equiv. of $(CH_3)_2AlSeCH_3$ 2, diethyl ether, room temp., 10 h; ii, $HN(CH_3)_2$, CH_2Cl_2

was isolated in high yield[†] (Scheme 1). Seven examples of the thionoselenolesters obtained are listed in Table 1 with some characteristic NMR data. Like their *Se*-aryl analogues,³ they are orange or red compounds, are stable even in contact with air, and can be stored at room temperature for weeks without significant change.

Kato *et al.* reported³ that upon treatment with secondary amines, *Se*-phenyl thionoselenolesters surprisingly gave salts of dithioacids. On the other hand, when the corresponding

[†] Typical experimental procedure. Dimethylaluminium methylselenolate **2** (2 mol dm⁻³ solution in toluene,⁴ 0.6 ml, 1.2 mmol) was added at room temperature under nitrogen to a solution of **3d** (156.8 mg, 0.87 mmol) in 5 ml of dry diethyl ether. The yellow mixture progressively turned orange and after ten hours was hydrolysed by wet magnesium sulphate. The diethyl ether was evaporated and the residue was chromatographed on a silica gel column using light petroleum as the eluant. The thionoselenolester **1d** (188 mg, 0.82 mmol, yield 94%) was isolated as an orange-red liquid. ¹H NMR (CCl₄): δ 2.48 (s, 3H), 4.32 (s, 2H), 7.32 (s, 5H). ¹³C NMR (CDCl₃): 13.9, 60.9, 127.4, 128.6, 129.3, 136.8, 241.3. MS (*m*/*z*, %): 230 (M⁺⁺, 17), 135 (PhCH₂CS⁺⁺, 45), 91 (100), 65 (33).

Table 1

				NMR	
	R ¹	R ²	Yield of 1^a	¹ H SeMe ^b	¹³ C C=S
а	n-C ₅ H ₁₁	C_2H_5	96%	2.56	245.1
b	$n-C_7H_{15}$	CH ₃	98%	2.50	245.1
c	n-C ₁₅ H ₃₁	CH_3	90% ^c	2.55	244.9
d	C ₆ H ₅ CH ₂	C_2H_5	94%	2.48	241.3
е	C ₆ H ₅	CH ₃	91%	2.69	233.2
f	p-CH ₃ OC ₆ H ₄	CH_3	87%	2.64	230.3
g	2-thienyl	CH ₃	89%	2.67	216.1

^a Yield of isolated product after liquid chromatography. ^b In every case a ${}^{2}J^{77}_{SeH}$ of *ca*. 12 Hz was observed. ^{*c*} Reaction time = 70 h.

Se-methyl compounds 1d,e,f were treated with gaseous dimethylamine in dichloromethane, the corresponding thioamides 4d,e,f and dimethyldiselenide were isolated in quantitative yields. Thus, in contrast with their Se-aryl analogues, Se-methyl thionoselenolesters appeared to be good thioacylating reagents.

Received, 25th March 1991; Com. 1/01416A

References

- 1 Three previously known thionoselenolesters are cited in ref. 3; for other references see: S. Kato, T. Fukushima, H. Ishihara and T. Murai, Bull. Chem. Soc. Jpn., 1990, 63, 638; S. Kato, H. Masumoto, S. Ikeda, M. Itoh, T. Murai and H. Ishihara, Z. Chem., 1990, 30, 67; S. Oae, K. Sakaki, M. Fukumura, S. Tamagaki, Y. Matsuura and M. Kakudo, Heterocycles, 1982, 19, 657.
- 2 S. Scheithauer and R. Mayer, Thio- and dithio-carboxylic acids and
- their derivatives. ed. A. Senning, Georg Thieme, Stuttgart, 1979. 3 S. Kato, E. Yasui, K. Terashima, H. Ishihara and T. Murai, *Bull.* Chem. Soc. Jpn., 1988, 61, 3931.
- 4 A. P. Kozikowski and A. Ames, J. Org. Chem., 1978, 43, 2735.
 5 A. F. Sviridov, M. S. Ermolenko, D. V. Yashunsky and N. K. Kochetkov, Tetrahedron Lett., 1983, 24, 4355.
- 6 The thionoesters 3a-g were obtained from the corresponding esters according to Lawesson's method: B. S. Pedersen, S. Scheibye, K. Clausen and S. O. Lawesson, Bull. Soc. Chim. Belg., 1978, 87, 293.